Research Data Management for Computational Science

Christian Jacobs c.jacobs10@imperial.ac.uk ctjacobs.github.io

and

Alexandros Avdis, Gerard Gorman, Matthew Piggott

Data requirements

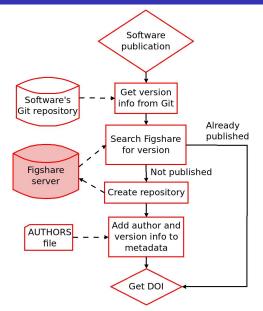
- Data produced by scientific software should be recomputable and reproducible.
- This requires:
 - the software itself (with info about the specific version used)
 - raw data (input and output files)
 - provenance metadata
- We need a way of publishing this data and software at the push of a button...
- ...and a way of referencing it correctly in papers.

Online repositories

- Organisations such as Figshare (figshare.com) and Zenodo (zenodo.org) provide hosting for code and datasets.
- Each code/dataset is given its own Digital Object Identifier (DOI).
- Programs developed by users can interface with Figshare and Zenodo via their APIs.

Aims

- Develop a software tool which facilitates the automated publication of both software and data to Figshare, Zenodo and DSpace repositories.
- Incorporate this tool into the workflow of Fluidity an open-source CFD code for fluid flow simulations (http://fluidity-project.org).
- DOIs are 'minted' automatically, and added to the current metadata of simulation output.


PyRDM

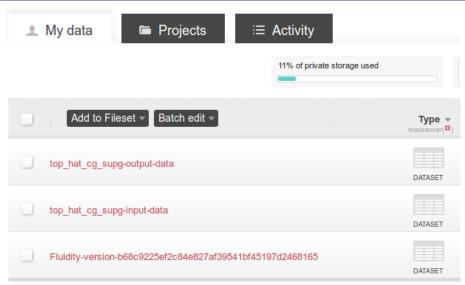
- PyRDM: Research Data Management with Python
- Released under the GNU GPL version 3 license.
- Source code on GitHub: http://github.com/pyrdm

 Paper: C. T. Jacobs, A. Avdis, G. J. Gorman, and M. D. Piggott (2014). PyRDM: A Python-based library for automating the management and online publication of scientific software and data. Journal of Open Research Software, 2(1):e28, DOI: 10.5334/jors.bj

PyRDM Publishing software source code

PyRDM Publishing data

- User specifies data files to be uploaded (e.g. [*.vtu]).
- If a new version of the repository is created (e.g. during peer review), MD5 checksums used to selectively re-upload only those files that have been modified.


Application: Fluidity + PyRDM

- PyRDM has been integrated into the workflow of Fluidity.
- Users enable a 'publish' option in their simulation's setup file, then run a Fluidity-specific publishing tool which uses the PyRDM library.
- The end-user just has to provide:
 - Their Figshare authentication details.
 - A list of any data files they want to publish (e.g. *.vtu).
 - Optionally: an existing Figshare publication ID and DOI.
- DOIs are recorded in the simulation setup file if the simulation is run again, the same DOI is used to store the data.
- The DOIs for the software and input data are appended to the simulation output for data provenance.

Application: Fluidity + PyRDM

File Edit View Validate Tools Help	
Node	Option Properties
fluidity_options	Description The online publishing service that you would like to use.
simulation_name	
problem_type	
▶ geometry	
▶ io	
timestepping	
physical_parameters	×
material_phase (Fluid)	
material_phase	+
mesh_adaptivity	+ Data
imported_solids	figshare
turbine_model	+
ocean_biology	+
ocean_forcing	+
reduced_model	+
porous_media	+
embedded_models	+
flredecomp	+
multiphase_interaction	+
▼ publish	× Comment
service	No comment
▶ software	
▼ input_data	
files	
article_id	+
doi	+
▶ output_data	

Application: Fluidity + PyRDM Example: simulation of the top_hat_cg_supg test case

Screenshot of software, input data and output data automatically pushed to Figshare. $\frac{10/12}{10}$

<constant name="FluidityVersion" type="string" value="1baf80aac1e7e735b1cf182bc20761a0c6df7767"/>

<constant name="SoftwareDOI" type="string" value="http://dx.doi.org/10.6084/m9.figshare.1035081"/>

<constant name="InputDataDOI" type="string" value="http://dx.doi.org/10.6084/m9.figshare.1035083"/>

<constant name="CompileTime" type="string" value="May 23 2014 15:22:23"/>

<constant name="StartTime" type="string" value="20140523 154857.775+0100"/>

Issues

- Need a better way of affiliating authors ORCID IDs?
- Lack of API support.
- Need more storage space for private data.