
LLVM runtime compilation for PyOP2 and Firedrake

Florian Rathgeber

April 12, 2014

PyOP21 and Firedrake2 are part of a high-level scientific com-
puting tool chain making use of runtime code generation and
compilation to achieve high performance and computational ef-
ficiency. This project will make this tool chain robustly scalable
to large HPC systems by replacing the existing compilation ar-
chitecture with an LLVM code generation backend.

PyOP2 is a high-level domain-specific language (DSL) embed-
ded in Python for the parallel execution of computational kernels
on unstructured meshes, generating problem-specific code for
a range of hardware architectures, targeting multi-core CPUs,
GPUs, accelerators and distributed parallel computations with
MPI. Backend-specific code tailored to each specific problem
is generated, just-in-time compiled and efficiently scheduled for
parallel execution at runtime.

Firedrake is a performance-portable framework for the auto-
mated solution of partial differential equations using the finite
element method (FEM). Scientists can describe problems sym-
bolically at a high level of abstraction very similar to their math-
ematical model. Assembly operations are transformed into local
computations over the mesh and efficiently executed by PyOP2,
which is used as the performance-portable parallel execution
layer.

LLVM is a modular compiler infrastructure with a source- and
target-independent optimizer built around a well specified inter-
mediate representation known as the LLVM IR. It includes a
Just-In-Time (JIT) code generation system with in-memory com-
pilation for various CPU target architectures. Python bindings
are provided by LLVMPY.

Runtime code generation in PyOP2 and Firedrake

PyOP2’s code generation technology for CPU targets involves
generating a C file which is compiled into a loadable Python
module at runtime, which is then imported into the running
process. The first step involves invoking a C compiler and re-
quires forking the interpreter process, which presents an issue
already for running moderately large problems on a workstation.
The second uses the normal Python import mechanism, even-
tually calling dlopen to load the shared library into the running
executable. This approach is unlikely to be scalable on large
HPC systems, since importing Python modules requires all
processes to stat a shared filesystem, simultaneously search-
ing for the location of the module. Python modules compiled to
shared objects are dlopened by all processes, again requiring
a search of the filesystem.

1
http://op2.github.io/PyOP2

2
http://firedrakeproject.org

Objectives

The core objective of this project is to replace the existing
PyOP2 code generation approach for CPU targets with in-
memory compilation using LLVM. The current C code genera-
tion and compilation stage is replaced with a backend that builds
an LLVM IR directly, which will be compiled to machine code in-
memory. As a result, at no point will the runtime code generation
ever have to touch the filesystem. This increases both the scal-
ability on current systems and reduces porting efforts to future
HPC systems.

Work plan

1. Implement single-threaded code generation backend using
LLVM / llvmpy

• Familiarisation with LLVM and llvmpy software
• Replacement of existing single-threaded backend

with LLVM-based backend
• Benchmarking of single core performance
• Benchmarking of scalability

2. Implement shared-memory code generation backend

• Evaluate suitability of LLVM OpenMP runtime support
against the potential use of pthreads

• Replacement of existing shared-memory parallel
backend with LLVM-based backend

• Benchmarking of single node performance
• Benchmarking of scalability

3. Profiling and performance tweaking, large scale run

• Ongoing performance profiling and optimisation
• Perform large scale simulations to highlight perfor-

mance gains

4. Dissemination, documentation and reporting

• Write up and disseminate results
• Document new code generation strategies

Alignment with PRISM strategy

• Exchange, collaboration and sharing of best practices with
other code generation based PRISM projects (e.g. PyFR)

• Regular presentation of progress and findings at the re-
searcher group meetings to keep the wider group informed

Impact

A robust and scalable runtime code generation approach will not
only increase the user base of Firedrake on current HPC plat-
forms, it will also contribute significantly to ease the long-term
maintenance burden of porting to new platforms and thereby
greatly benefit the longer term sustainability of PyOP2 and Fire-
drake.


