
Implementation of high-performance GPU kernels in Nektar++

Supporting: Jan Eichstädt (3 months)
Collaborators: Dr. David Moxey, (Engineer-
ing, University of Exeter), Prof. Spencer J. Sher-
win (Aeronautics, Imperial College London), Prof.
Joaquim Peiró (Aeronautics, Imperial College Lon-
don)

1 Outline

In modern high-performance computer architectures,
both CPUs and GPUs, the gap between processor
clock speed and memory bandwidth has seen a con-
sistent increase over the last decade. In this con-
text, high-order finite element methods are particu-
larly attractive due to their high arithmetic inten-
sity, which is further tuneable through the choice of
element polynomial order. Matrix-free formulations
of operators, on tensor product elements, in combi-
nation with single instruction multiple data (SIMD)
vectorisation is a well studied solution for efficient
implementations. Recently, the above strategy has
been extended by Moxey et al. [1] to tensor product
simplicial elements on a standalone app, which is par-
tially based on the Nektar++ library, for the solution
of the Helmholtz equation. The Nektar++ library is
a very suitable environment for such efforts, as it is
a tensor product based hp-spectral element frame-
work that comes with a number of PDE solvers, and
also allows one to construct a variety of new solvers.
The main existing solvers are a continuous Galerkin
incompressible Navier-Stokes solver and a discontin-
uous Galerkin compressible Navier-Stokes solver.

I am currently extending the above mentioned
standalone app with efficient GPU kernels for the
Helmholtz solver, which come in two flavours: Firstly
SIMT vectorised kernels similar to the CPU kernels,
and secondly non-vectorised kernels which exploit the

inner parallelism of each elemental operation. In this
project we plan to port the core GPU kernels of this
app, thus adding a GPU backend to the Nektar++
library. In a previous project, G. Castiglioni has al-
ready started porting the vectorised CPU kernels to
a new library, so this project will build on his efforts.
The intent is to improve the efficiency of key oper-
ators of the Nektar++ library with the end goal of
accelerating both the compressible and incompress-
ible flow solvers. In effect, this project will lay the
foundations for the first GPU implementations of the
Nektar++ library. So far the GPU kernels have been
implemented using the CUDA programming model
for Nvidia GPUs, but in order to also address AMD
GPUs, that are increasingly installed on HPC clus-
ters, we will additionally look into the HIP [2] pro-
gramming model, which is syntactically very similar
to CUDA . The purpose of this project is to apply
techniques to accelerate high-order finite element op-
erators which will not only benefit the Nektar++ user
base, but also both other PRISM partners and the
wider academic community.

2 Project objectives

The end goal of this project is to improve the com-
putational efficiency of key operators within the Nek-
tar++ library to exploit GPU hardware.

Porting GPU kernels: As first step towards the
end goal, I will port GPU kernels for matrix-free op-
erators from an existing app [1] to Nektar++ to add
to the new core library. The app was developed to
showcase the advantages of matrix-free operators for
tensor product simplicial elements in the context of
a Helmholtz solver. Most of these operators are the
backbone for more complete Navier-Stokes solvers.
The app further served as a sandbox to investigate

1



different parallelisation and memory placement ap-
proaches for efficient GPU kernels. Now that we have
distilled the most performant GPU kernels, the aim
is to backport these to the Nektar++ library. This is
facilitated as the app already utilises the Nektar++
library for the construction of basis functions, deriva-
tives, quadrature points, weights, and other ancillary
functions. At this point it will also be essential to de-
cide on the specific GPU programming model, either
CUDA or HIP.
Developing missing kernels: Not all kernels for

all element types were developed for the app: the sec-
ond step will consist in developing the missing ker-
nels.
Benchmarking kernels: The third step of this

project will consist of benchmarking the newly
ported kernels against the currently used ones. The
benchmarking will cover 2D and 3D elements such
as quadrilaterals and triangles in 2D hexahedrals,
prisms, and tetrahedrals in 3D. All elements will be
tested in in regular and deformed configurations. The
benchmark metrics will comprise througput/DOF,
and roofline models based on different memory and
cache level bandwidths.
Publicating the results: The parallelisation ap-

proaches (SIMT vectorisation vs inner parallelism),
as well as data placement strategies for different GPU
memory spaces shall be presented in a scientific publi-
cation. This will entail the presentation of the bench-
marking results mentioned above.

3 Alignment with PRISM
strategy

Supporting long-term research: This project
will allow me to spend the time necessary to backport
extensive parts of my research to the Nektar++ li-
brary, therefore directly benefit the Nektar++ group
and the wider Nektar++ community. The solver re-
structuring will also create the foundation for the
first GPU implementations of Nektar++ flow solvers.
Given the increasing prevalance of GPUs in leading
HPC clusters, this step will increase the chances of
creating successful proposals for runtimes on these

machines.
Development of Nektar++ developer: Addi-

tionally, this fund will enable me to focus on integrat-
ing major parts of a library to an extensive framework
such as Nektar++ , therefore strengthening my pro-
gramming skillset and thus becoming a more valuable
computational researcher.

Collaboration with other PRISM members:
Dr. Peter Vincent is another PRISM investigator and
he is a project leader of PyFR. PyFR is a solver
based on flux reconstruction which can be seen as
another flavor of high-order finite element methods.
The techniques parallelisation approaches, memory
placement, and the comparison of CUDA and HIP
programming model, could potentially benefit devel-
opments in PyFR.

4 Brief work plan

• Port GPU kernels for the Helmholtz solver that
were developed by myself to the new core library
in Nektar++ .

• Develop missing kernels for all element types.

• Benchmark newly ported kernels against vec-
torised CPU kernels.

• Write and submit a journal publication to dis-
seminate the results to the wider academic com-
munity.

References

[1] D. Moxey, R. Amici, and R. M. Kirby. Efficient
matrix-free high-order finite element evaluation for
simplicial elements. under review in SIAM J. Sci.
Comput., March 2019.

[2] HIP Repository. https://github.com/ROCm-
Developer-Tools/HIP, 2020.

2


	Outline
	Project objectives
	Alignment with PRISM strategy
	Brief work plan

